Quasi-solutions, vector Lyapunov functions, and monotone method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-convex Functions and Quasi-monotone Operators

The notions of a quasi-monotone operator and of a cyclically quasi-monotone operator are introduced, and relations between such operators and quasi-convex functions are established.

متن کامل

Duality between quasi-concave functions and monotone linkage functions

A function F defined on all subsets of a finite ground set E is quasiconcave if F (X∪Y ) ≥ min{F (X), F (Y )} for all X, Y ⊂ E. Quasi-concave functions arise in many fields of mathematics and computer science such as social choice, theory of graph, data mining, clustering and other fields. The maximization of quasi-concave function takes, in general, exponential time. However, if a quasi-concav...

متن کامل

On copositive Lyapunov functions for a class of monotone systems

This paper considers several explicit formulas for the construction of copositive Lyapunov functions for global asymptotic stability with respect to monotone systems evolving in either discrete or continuous time. Such monotone systems arise as comparison systems in the study of interconnected large-scale nominal systems. A copositive Lyapunov function for such a comparison system can then serv...

متن کامل

A Contractive Approach to Separable Lyapunov Functions for Monotone Systems

Monotone systems preserve a partial ordering of states along system trajectories and are often amenable to separable Lyapunov functions that are either the sum or the maximum of a collection of functions of a scalar argument. In this paper, we consider constructing separable Lyapunov functions for monotone systems that are also contractive, that is, the distance between any pair of trajectories...

متن کامل

Quasi–monotone Weight Functions and Their Characteristics and Applications

A weight function w(x) on (0, l) or (l,∞) , is said to be quasi-monotone if w(x)x−a0 C0w(y)y−a0 either for all x y or for all y x, for some a0 ∈ R , C0 1 . In this paper we discuss, complement and unify several results concerning quasi-monotone functions. In particular, some new results concerning the close connection to index numbers and generalized Bary-Stechkin classes are proved and applied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 1981

ISSN: 0018-9286

DOI: 10.1109/tac.1981.1102771